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Lecture 7 
Question 1. Free particle confined in a 1D, 2D, or 3D box.  
(1) Particle in a 1D box. When β-carotene (see the figure below) is oxidized in vivo, it breaks in 
half and forms two molecules of retinal (vitamin A), which is a precursor to the pigment in the 
retina responsible for vision. The conjugated system of retinal consists of 11 C atoms and one O 
atom. In the ground state of retinal, each level up to n = 6 is occupied by two electrons. Assuming 
an average internuclear distance of 140 pm, calculate the frequency of the radiation required to 
produce a transition between n = 6 (ground state) and n = 7 (the first excited state).  
  How does the absorption spectrum of a linear polyene shift as the number of conjugated atoms 
increase?  

 
(2) Particle in a 2D box. Polycyclic aromatic hydrocarbons (PAHs) are atmospheric pollutants, 
components of organic light-emitting diodes and components of the interstellar medium. This 
problem deals with so-called linear PAHs, i.e., those being just one benzene ring wide whereas the 
length is varied. Specific examples are benzene, anthracene and pentacene, whose structures are 
shown below. Their physical and chemical properties depend on the extent to which the π-electron 
cloud is delocalized over the molecule. 

 
  (2a) The distance across the benzene ring is d = 240 pm. Use this information to estimate the 

distances along the horizontal axis for anthracene and pentacene, da and dp, respectively. 
  (2b) Assume for simplicity that the π electrons of benzene can be modeled as being confined to 

a square. Within this model, the conjugated π electrons of longer PAHs may be considered as 
free particles in a 2D rectangular box in the plane. Note that for a particle in a 2D box, each 
energy level may consist of degenerate energy states. (If the two sides are unequal, then do you 
expect degeneracy?) Show the π-electron orbital energy diagram (with the values of the two 
quantum numbers for each state) qualitatively and calculate the energy gap △E (in Joules) 
between the highest occupied and lowest unoccupied energy levels (i.e., the LUMO-HOMO gap) 
for benzene, anthracene and pentacene.  
(2c) Rank benzene, anthracene, and pentacene in order of increasing π-electron reactivity. 
(2d) Rank benzene, anthracene, and pentacene in order of the wavelengths of absorption peaks 
in electronic absorption spectra qualitatively.  

(3) Particle in a 3D box. Quantum mechanical effects need to be invoked in the description of the 
electronic properties of a metallic nanocrystal, here modeled as a 3D box.  

(3a) Set up the eigenvalue equation for a particle of mass m in a 3D rectangular box with sides 
Lx, Ly, and Lz. Using separation of variables, solve for eigenfunctions and total energy. 
(3b) Specialize the result from (3a) to an electron moving in a cubic box of side L and draw an 
energy diagram qualitatively (in the unit of h2/8mL2) showing the first 15 energy levels (with 
the values of quantum numbers for each state).  
(3c) Compare the energy level diagram from (3b) with the energy level diagram for an electron 
in a 1D box of the same length L. Are the energy levels more or less sparsely distributed in the 
cubic box than in the 1D box? This practice gives you a feeling about the motion in 3D vs. 1D.  



CHEM 4476: Physical Chemistry II 
 

 2 

Lecture 8 
Question 2. In this question, we will prove a very handy recipe for determining the relation 
between the expectation values of the kinetic energy and potential energy of stationary states 
without solving Schrodinger equation. From this recipe, you can analyze the contributions from 
the kinetic and potential energies to the total energy – the simplest energy-decomposition analysis.  
(1) Let us start with a single particle in 1D space. Please show that the commutator "𝐻$, 𝑥𝑝̂!) is 
equal to 𝑖ℏ𝑥 ∙ (𝜕𝑉 𝜕𝑥⁄ ) − 𝑖ℏ𝑝̂!"/𝑚 
Hint: Use the algebraic properties of commutators to simplify your derivation. See, e.g., Problem 
Set 2, Q9, (2.3). 
(2) Define 𝐺6 = 𝑟 ∙ 𝑝⃑  for a particle in 3D, where the position vector 𝑟 = (𝑥, 𝑦, 𝑧)  and the 
momentum vector 𝑝 = <𝑝̂! , 𝑝̂# , 𝑝̂$=. Please generalize what you have in (1) to 3D: 

"𝐻$, 𝐺6) = 𝑖ℏ𝑟 ∙ ∇𝑉 − 2𝑖ℏ𝑇6  
where 𝑇6 is the kinetic energy operator, and ∇ the gradient operator in 3D.  
(3) Show that for any stationary states Ψ(𝑟, 𝑡) = 𝜓(𝑟)𝑒%&'(/ℏ, in which 𝜓(𝑟) is the eigenstate of 
𝐻$ with eigenvalue E, the expectation value 〈"𝐻$, 𝐺6)〉 = 0. 
(4) Put (2) and (3) together, and show the relation between kinetic energy and potential energy 
follows 2 ∙ 〈𝑇6〉 = 〈𝑟 ∙ ∇𝑉〉 for any stationary states. 
(5) Application 1: A chemical bond can be modeled by a 1D harmonic oscillator. The potential 
function 𝑉(𝑥) = 𝑘𝑥"/2, where k is a constant (the so-called “force constant” of a bond), and x is 
the displacement. Please show that the kinetic energy 〈𝑇6〉 and potential energy 〈𝑉〉 contribute 
equally to the total energy of a 1D harmonic oscillator. 
(6) Application 2: An electron moving in an H atom is under a central potential due to the attraction 
between the nucleus and the electron (we view the nuclear charge Z = 1 and set e = 1 unit below)  

𝑉(𝑟) = −
1

4𝜋𝜀+𝑟
 

where r is the separation between the electron and the nucleus. We know that the ground-state 
energy of an electron in an H atom is 13.6 eV (which is the ionization energy of an H atom). What 
are the values of the kinetic energy 〈𝑇6〉 and potential energy 〈𝑉〉 at the ground state?  
 
Lecture 9 
Question 3.1 The particle on a ring (2D) is a useful model for the motion of electrons around the 
porphyrin ring, the conjugated macrocycle that forms the structural basis of the haem group and 
the chlorophylls.  

 
We may treat the group as a circular ring of radius 440 pm, with 22 electrons in the conjugated 
system moving along the perimeter of the ring. In the ground state of the molecule, each state is 
occupied by two electrons.  
(1) Calculate the energy and angular momentum of an electron in the highest occupied orbital. 
(2) Calculate the wavelength (in nm) of radiation that can induce a transition between the highest 
occupied and lowest unoccupied levels. Does this molecule have color to your eyes? 

 
1 Adapted from Atkins, the 9th edition, Chapter 8 – Problem 8.35. 
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Question 4.2 Read Atkins (the 9th edition), section 8.7 “Rotation in three dimensions: the particle 
on a sphere”, subsections (a) and (b). Check McQuarrie, Chapter 8, section 8.4, if you need more 
math background information about spherical coordinates. 
  Particle inside a sphere with radius R is a reasonable starting point for the discussion of the 
electronic properties of spherical metal nanoparticles. Here, we justify the expression for the 
energy levels with the quantum number l = 0. 
(1) (Optional – For bonus credits) The Hamiltonian for a free particle inside a sphere of radius R  

𝐻$ = −
ℏ"

2𝑚∇" 
Show that the time-independent Schrodinger equation is separable into radial and angular 
components. That is, begin by writing 𝜓(𝑟, 𝜃, 𝜙) = 𝑢(𝑟)𝑌(𝜃, 𝜙), where 𝑢(𝑟) depends only on 
the distance of the particle away from the center of the sphere, and 𝑌(𝜃, 𝜙) is a spheric harmonic 
function. Then show that the Schrodinger equation can be separated into two equations, one for u, 
the radial equation, and the other for Y, the angular equation: 

−
ℏ"

2𝑚Q
𝜕"𝑢(𝑟)
𝜕𝑟" +

2
𝑟 ∙
𝜕𝑢(𝑟)
𝜕𝑟 S +

𝑙(𝑙 + 1)ℏ"

2𝑚𝑟" ∙ 𝑢(𝑟) = 𝐸𝑢(𝑟) 

Λ$"𝑌(𝜃, 𝜙) = −𝑙(𝑙 + 1)𝑌(𝜃, 𝜙) 
(Please refer to section 8.7 (a) and (b) for the definition of the Legendrian operator Λ$".) 
(2) Consider the case l = 0. Show by differentiation that the solution of the radial equation has the 
form 

𝑢(𝑟) = (2𝜋𝑅)%,/" ∙
sin(𝑛𝜋𝑟/𝑅)

𝑟  

(3) Now go on to show that the allowed energies are given by 

𝐸- =
𝑛"ℎ"

8𝑚𝑅" 

for l = 0 (the so-called “s state”).  
 
Lecture 10 
Question 5. Chemists use electrochemistry and electrocatalysis to synthesize new molecules with 
sustainable energy – electricity. An external electric field can certainly change the reactivity of a 
molecule or an ion.  

A charged diatomic molecule (ion) in an external electric field can be modeled as (within the 

1D harmonic approximation): , in which m is the reduced mass,  is 

the harmonic frequency, x is the displacement coordinate, q is the charge, and  is the strength 
of the external uniform field. Solve for the exact energy levels. 
Hint: Try to rewrite the Hamiltonian in terms of a new displacement coordinate such that the 
Hamiltonian is in the same form as a 1D harmonic oscillator.  
 
Question 6. 1D Harmonic oscillator: 

(1) Prove that the rising operator  increases the energy of the eigenstate  by . 

(2) Evaluate , , ,  and , by using the algebraic 
properties of the rasing and lowering operators. 

 
2 Adapted from Atkins, the 9th edition, Chapter 8 – Problem 8.38. 
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Question 7. Isotope effect modeled by a 1D harmonic oscillator. The vibration of a diatomic 
molecule AB with the reduced mass 𝜇 = 𝑚A𝑚B/(𝑚A +𝑚B) around its equilibrium geometry 
can be modeled by 

𝐻$ =
𝑝̂!"

2𝜇 +
1
2𝜇𝜔

"𝑥" 

where 𝜔 is the vibrational angular frequency, and x the relative displacement.  
Various isotopes of a given atom obey the same chemical principles, but their different masses 

cause different behaviors in a dynamic sense. The kinetic isotope effect refers to a phenomenon 
wherein isotopically substituted molecules react at different rates. It was postulated in 1933 by 
Eyring and Polanyi and since then kinetic isotope effects have provided detailed information about 
mechanisms of many organic and biochemical reactions. 
(1) Isotopic substitution does not change the potential-energy surface of a molecule. Therefore, the 
force constant (𝜇𝜔") remains unaffected. Given the vibrational wavenumbers of 1HAX (2439.0 
cm−1) and 2DA+2X (1734.8 cm−1), determine the unknown element X. 
Note: 1H and 2D are the isotopes of hydrogen; AX and A+2X are the isotopes of the unknown element 
X with atomic mass A and A+2, respectively.  
(2) Zero-point vibrational energy is the key contributor to the kinetic isotope effect. If we assume 
that the bond is fully broken at the transition state and only the ground vibrational state is populated, 
the difference in activation energies has the same absolute value as the difference in zero-point 
vibrational energies. The wave numbers of the C−H and C−D stretches are 2900 cm−1 and 2100 
cm−1, respectively. Calculate the ratio of the rate constants k(C−H)/k(C−D) for the cleavage of the 
C−H/D bond at 300 K, taking into account only the difference in zero-point vibrational energies. 
(3) Kinetic isotope effects provide insight into the rate-determining step of a reaction mechanism. 
The ratio of kH/kD for the formation of propene from 1-bromopropane and 1-bromo-2,2-
dideuteriopropane in basic solution is 6.5. Does the reaction proceed by E1 or E2 mechanism? E1 
takes place in two steps: formation of the carbocation intermediate followed by loss of H+. E2 
occurs in a single step involving removal of the halide at the same time as the neighboring 
hydrogen. 

 
(4) Let us consider the formation of the corresponding alkene from 2-bromo-3,3-dideuterio-2-
methylbutane and its light-hydrogen analog upon heating in ethanol. How significant would the 
kinetic isotope effect be in this case? 
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Lecture 11 
Question 8.3 Many biological electron-transfer reactions, such as those associated with biological 
energy conversion, may be visualized as arising from electron tunneling between protein-bound 
co-factors, such as cytochromes, quinones, flavins, and chlorophylls. This tunneling occurs over 
distances that are often greater than 1.0 nm, with sections of protein separating electron donor from 
the acceptor. For a specific combination of donor and acceptor, the rate of electron tunneling is 
proportional to the transmission probability, with the absolute value of the electron’s wave vector 
being 7 nm-1 in the tunneling region. Estimate that by what factor does the rate of electron tunneling 
between two co-factors increase as the distance between them changes from 2.0 nm to 1.0 nm?  
 
Question 9. Consider a particle with mass m in a 1D finite well, in which the potential V(x): 

 

where V0 is a positive constant, and L is the length of the box.  
(1) For the bound states (i.e., E < 0, in which the particle stays inside the trap), show that the energy 

levels satisfy  (for the even  in ) or  

(for the odd  in ), where  and .   

Hint: In 1D, if the potential function is an even function, then the wavefunctions of the eigenstates 
must be either odd or even.  
(2) (Optional – For bonus credits) Are you guaranteed to have bound states (i.e., E < 0) inside the 
finite well for any positive value of V0 (V0 > 0), i.e., a trap with some finite depth?  
(3) For the scattering states (i.e., a particle with the energy E > 0 is shooting from the left side of 
the potential), show that in general, the transmission probability T ≤ 1.  

T < 1 is called the non-classical reflection. Imagine you throw a golf ball above your desk, and 
the ball hits your face! What does the energy E need to be (the so-called resonance energy) in order 
to let the well become perfectly transparent, i.e., T = 1? 
 
Lecture 12 
Question 10.4  H atom: Eigenfunctions and eigenvalues. Explicit expressions for hydrogenic 
orbitals are given in Table 9.1 and 8.2 (Atkins, the 9th ed.).  
(1) What is the most probable point (not radius) at which a 2p electron will be found in the 
hydrogen atom? 
(2) Verify both that the 3px orbital is normalized and that 3px and 3dxy are mutually orthogonal.  
(3) Determine the positions of both the radial nodes and nodal planes of the 3s, 3px, and 3dxy 
orbitals.  
(4) Draw a graph of the radial distribution function for 3s, 3px, and 3dxy orbitals. 
(5) Determine whether the px and py orbitals are eigenfunctions of . If not, does a linear 

combination exsit that is an eigenfunction of ? 
 

3 Adapted from Atkins, the 9th edition, Chapter 8 – Problem 8.32. 
4 Adapted from Atkins, the 9th edition, Chapter 9 – Problems.  
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(6) (Optional – For bonus credits) The “size” of an atom is sometimes considered to be measured 
by the radius of a sphere that contains 90 per cent of the charge density of the electrons in the 
outermost occupied orbital. Calculate the “size” of a hydorgen atom in its ground state according 
to this definition.  
  Go on to explore how the “size” varies as the definition is changed to other percentages, and 
plot your conclusion. 
(7) Some atomic properties depende on the average value of 1/r rather than the average value of r 
itself. Compute the expectation value of 1/r for (a) 1s orbital, (b) 2s orbital, and (c) 2p orbital.  
 
Lecture 13 
Question 11. Work with angular momentum operator in spherical coordinates. Check McQuarrie, 
Chapter 8, section 8.4, if you need more math background information about spherical coordinates.  
(1) Start from the definition of angular momentum operator  with the gradient 

operator in spherical coordinates , prove: 

 

(2) Validate  with the spherical-coordinate representation. 

(3) Eigenfunction and eigenvalue.  
(a) Validate that the function  is an eigenfunction of . What is the  
corresponding eigenvalue?  
(b) Is this function also an eigenfunction of ?  
(c) Normalize . 

 
Question 12. When describing the quantum states of multielectron atoms, we use the term symbol. 
(We will cover term symbol in the later lecture.) What one does is to consider the “addition” (a 
better word would be “coupling”) of various angular momenta from different electrons. We will 
need to use the following bra-kets (or matrix elements): 
(a)           

(b)     

 

(c)  

 

in which the Dirac notation for a spherical harmonic function 𝑌0,2(𝜃, 𝜙) with quantum numbers 
l and m is |𝑙, 𝑚⟩, and 𝛿00!, 𝛿22!, etc. are the Kronecker deltas for orthonormal relations. 
  Use the properties of angular momentum operators and the associated eigenequations, prove the 
above bra-kets (a), (b), and (c).   

L̂ = −i!r̂ × ∇

∇ = er
∂
∂r

+ eθ
1
r
∂
∂θ

+ eϕ
1

r sinθ
∂
∂ϕ

L̂2 = −!2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+ 1
sin2θ

∂2

∂ϕ 2

⎡

⎣
⎢

⎤

⎦
⎥

L̂x , L̂y⎡⎣ ⎤⎦ = i!L̂z

f (θ ,ϕ ) = sin3θ cos(3ϕ ) L̂2

L̂z
f (θ ,ϕ )

′l , ′m L̂z l,m = m!δ l ′l δm ′m ′l , ′m L̂2 l,m = l(l +1)!2δ l ′l δm ′m

′l , ′m L̂+ l,m = ! l(l +1)−m(m+1)δ l ′l δ ′m ,m+1

′l , ′m L̂− l,m = ! l(l +1)−m(m−1)δ l ′l δ ′m ,m−1

′l , ′m L̂x l,m = !
2

l(l +1)−m(m+1)δ l ′l δ ′m ,m+1 + l(l +1)−m(m−1)δ l ′l δ ′m ,m−1
⎡
⎣

⎤
⎦

′l , ′m L̂y l,m = − i!
2

l(l +1)−m(m+1)δ l ′l δ ′m ,m+1 − l(l +1)−m(m−1)δ l ′l δ ′m ,m−1
⎡
⎣

⎤
⎦


