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I. INTRODUCTION

Many attempts were made to derive with the old quantum
theory structures for the hydrogen molecule, H2, and the hydrogen
molecule-ion, H2+, in agreement with the experimentally observed
properties of these substances, in particular their energy contents.
These were all unsuccessful, as were similar attempts to derive a

satisfactory structure for the helium atom. It became increas-
ingly evident that in these cases the straightforward application
of the old quantum theory led to results definitely incompatible
with the observed properties of the substances, and that the
introduction of variations in the quantum rules was not sufficient
to remove the disagreement. (For a summary of these applica-
tions see, for example, Van Vleck (1).) This fact was one of those
which led to the rejection of the old quantum theory and the
origination of the new quantum mechanics. The fundamental
principles of the quantum mechanics were proposed by Heisen-
berg (2) in 1925. The introduction of the matrix algebra (3) led
to rapid developments. Many applications of the theory were

made, and in every case there was found agreement with experi-
ment. Then the wave equation was discovered by Schrodinger
(4), who developed^and applied his wave mechanics independently
of the previous work. Schrodinger’s methods are often con-

siderably simpler than matrix methods of calculation, and since
it has been shown (5) that the wave mechanics and the matrix
mechanics are mathematically identical, the wave equation is
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generally used as the starting point in the consideration of the
properties of atomic systems, in particular of stationary states.

The physical interpretation of the quantum mechanics and its
generalization to include aperiodic phenomena have been the sub-
ject of papers by Dirac, Jordan, Heisenberg, and other authors.
For our purpose, the calculation of the properties of molecules in
stationary states and particularly in the normal state, the con-

sideration of the Schrodinger wave equation alone suffices, and it
will not be necessary to discuss the extended theory.

In the following pages, after the introductory consideration of
the experimentally determined properties of the hydrogen mole-
cule and molecule-ion, a unified treatment of the application of
the quantum mechanics to the structure of these systems is
presented. In the course of this treatment a critical discussion
will be given the numerous and scattered pertinent publications.
It will be seen that in every case the quantum mechanics in
contradistinction to the old quantum theory leads to results in
agreement with experiment within the limit of error of the calcu-
lation. It is of particular significance that the straightforward
application of the quantum mechanics results in the unambiguous
conclusion that two hydrogen atoms will form a molecule but
that two helium atoms will not; for this distinction is character-
istically chemical, and its clarification marks the genesis of the
science of sub-atomic theoretical chemistry.

II. THE OBSERVED PROPERTIES OF THE HYDROGEN MOLECULE AND
MOLECULE-ION

The properties of the hydrogen molecule and molecule-ion
which are the most accurately determined and which have also
been the subject of theoretical investigation are ionization
potentials, heats of dissociation, frequencies of nuclear oscillation,
and moments of inertia. The experimental ^alues of all of these
quantities are usually obtained from spectroscopic data; substan-
tiation is in some cases provided by other experiments, such as

thermochemical measurements, specific heats, etc. A review of
the experimental values and comparison with some theoretical
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results published by Birge (7) has been used as the basis for the
following discussion.

The ultraviolet absorption spectrum of hydrogen was analyzed
by Dieke and Hopfield (8). They identified the three lowest

Fig. 1. Energy Level Diagram for the Three Lowest Electronic States of
the Hydrogen Molecule, Showing Successive Oscillational Levels

electronic states, indicated in figure 1 by the symbols A, B, and C,
and for each a number of states of oscillation of the nuclei, also
shown in the figure. In addition there is a fine-structure of each
oscillational state due to rotation of the molecule. A number of
these levels were independently obtained by Witmer (9) from the
analysis of the Lyman bands. Richardson (10) has analyzed
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bands in the visible, and on the basis of comparison of the oscilla-
tional and rotational fine-structure has identified the lower states
of some of these bands with Dieke and Hopfield’s B and C states.
The upper levels of Richardson’s bands correspond to an electron
in successive excited states, and by means of an assumed Rydberg
formula Birge has carried out the extrapolation to ionization, and
has obtained for the ionization potential of the hydrogen molecule
the value

IH2 = 15.34 ± 0.01 volts

n-*

Fig. 2. The Oscillational Frequency for the Normal State of the

Hydrogen Molecule as a Function of the Oscillational
Quantum Number

The area under the curve gives the heat of dissociation

He also states that he has verified this value by means of the
heat of dissociation of various excited states of the molecule as

obtained by extrapolating the oscillational levels in the way
described below.

Ionization by electron impact has been shown (11) to occur at
about 16.1 volts. Condon has given the explanation of the
discrepancy between this and the band spectrum value in terms of
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a general phenomenon discovered and interpreted by Franck (12).
We shall see later that the equilibrium internuclear distance for
Hs is about 0.75 A, and for H2+, 1.06 A. When H2 in the normal
state is ionized by electron impact to H2+ the nuclei do not have
time to move, but are left some distance from their new equi-
librium positions. As a result large nuclear oscillations occur,
estimated by Condon to correspond to about 1 volt-electron of
oscillational energy; and this energy in addition to the ionization
energy must be supplied by the impacting electron.

The best experimental value of the heat of dissociation of H2
is that obtained by Witmer (9) by extrapolating the oscillational
levels of the normal state of the molecule to dissociation. The
restoring force acting on the two nuclei becomes smaller as the
nuclei get farther apart, and as a result the oscillational frequency
in successive oscillational states becomes smaller and smaller.
For H2 in the normal state this oscillational frequency

“» = T T—h 5 n

is represented in figure 2 for values of n, the oscillational quantum
number,1 from 0 to 11. The curve was extrapolated by Witmer
as shown by the dotted line; the area under it is equal to the
heat of dissociation, and gives

Dg2 = 4.34 ± 0.1 volt-electrons

It is of interest to note that dissociation, represented in figure 1

by the dotted line, is very close to the highest observed os-
cillational-rotational state. Indeed the oscillational and rota-
tional energy of the highest observed level was 4.10 v.e. (94,600
cal/mole), which must be a lower limit to the heat of dissociation.

The value 4.34 v.e. is equal to 100,000 cal/mole. Thermo-
chemical measurements are in satisfactory agreement with this
spectroscopic result. Thus Isnardi’s experiments (13) on the
thermal conductivity of partially dissociated hydrogen give, with
the computational error discovered by Wohl (14) corrected, a

1 The true oscillational quantum number has the values 1/2, 3/2, 5/2,... For
convenience we shall use in this paper the integers obtained by subtracting §
from these values, unless specific mention is made of an alternative procedure.
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value between 96,765 and 102,257 cal/mole. Langmuir’s most
recent value from his similar measurements (15) is 97,000
cal/mole.

From the rotational fine-structure of the A levels Hori (16)
obtained the value

L = 0.467 X 10-“ g. cm.s

for the moment of inertia of the molecule in the normal state,
corresponding to an equilibrium internuclear distance

r0 = 0.76 k

TABLE 1

The properties of the hydrogen molecule

Ee, cm-1 n· co0,cm_l r0'L

1 VS (A) 0 0.9396 4264 0.76
2 21S(B) 90083 1.7920 1325 1.55
3 23P (94735) (1.9281) 2390 0.97
4 23S 94906.7 1.9337 2593.82 1.08
5 2  (95469) (1.9526)
6 C 99086 2.0882 2380 1.06
7 33S 111427 2.9261
8 33P 111518.1 2.9365 2306.94 1.136
9 3'P 111656.8 2.9526 2373.89

10 43P 117169.9 3.9395 2276.45 1.145
11 4 ip 117216.9 3.9526 2325.6(?)
12 53P 119744.2 4.941 2251 1.168
13 63P 121130.2 5.942 2229 (?) 1.166
14 73P 121961.0 6.942
15 83P 122498.3 7.942
16 H,+ 124237 2247 (1.06)

This result is independently verified by Dennison (17) who has
recently given a satisfactory theory of the specific heat of hydro-
gen. The observed specific heat as interpreted by Dennison
requires that ID be equal to 0.464 X 10~40 g. cm.2. The very recent
measurements by Cornish and Eastman (18) of the specific heat
of hydrogen from the velocity of sound are said to agree very well
with Dennison’s theory if I0 be given the value of 0.475 X 10~40

g. cm.2.
The oscillational frequency of the nuclei in H2 in the normal
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state was calculated by Birge from the measurements of Witmer,
Dieke and Hopfield, and Hori to be

= 4264 cm. -1

By extrapolating the observed oscillational frequencies for various
excited states of H2 forming a part of a Rydberg series, Birge
obtained for H2+ in the normal state the value

«Hi1· = 2247 cm.-*

A summary of information regarding various electronic states
of the hydrogen molecule is given in table 1, quoted from Birge.

The symbols in the second column represent the electronic
state; in particular the first number is the total quantum number
of the excited electron. We shall see later that in one case at
least the symbol is probably incorrect. The third column gives
the wave-number of the lowest oscillational-rotational level,
the fourth the effective quantum number, the fifth and sixth the
oscillational wave-number and the average internuclear distance
for the lowest oscillational-rotational level. The data for H2+
were obtained by extrapolation, except n>, which is Burrau’s
theoretical value (Section Via).

The interrelation of these quantities and comparison with
theoretical results will be discussed in the following sections of this
paper.

III. THE HYDROGEN ATOM

The wave equation representing a conservative Newtonian
dynamical system is

   + ^OF- V(cu))*-0 (1)h‘

with the conditions that  , the wave function or eigenfunction,
be everywhere continuous, single-valued, and bounded. W and
V (qk) are the energy constant and the potential energy; and the
differential operations are with respect to coordinates whose
line-element is given by

ds2 = 2T (qk, qk) dt2,
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in which T is the kinetic energy expressed as a function of the
velocities. Only certain functions satisfy these requirements in
any given case; to each there corresponds a characteristic value of
the energy constant W. For a hydrogen-like atom with fixed

Ze2nucleus of charge Ze the potential energy is ——, and the wave

equation is

b'-  d2^ dV 8u-2m

dx2 dy2 dz2 h2 (w + " (2)

On writing for the eigenfunction
   Im = Xnl (f) Y Im W Zm ( ), (3)

the wave equation can be resolved into three total differential
equations, with the solutions (4) (19)

Xm (r)
Í/2ZV (w - l - l)!|i
|yno0J 2   [(  +  ) !]3j

'i!Li2;t1) (f)

with
2Z

_

ft2
^

rta0
r’ a°

4 it2 me2
= 0.529 A.

Y-m (») = \d + i) Pi" (COS fi)

Zm M =

V2tt

(4)

L(’£¡) ( ) represents the (2i + l)th derivative of the {n + Dth
Laguerre polynomial (20); and P7 (cos  ) is Ferrers’ associated
Legendre function of the first kind, of degree l and order m.

Yim Zm thus constitutes a tesseral harmonic (21). The f’s are

in this form orthogonal and normalized, so that they fulfill the
conditions

S    Im   'I'm' dO
1 for   = ft', l = V, m = m'
0 otherwise

(5)

in which do is the element of volume. The parameter n, the
principal quantum number, can assume the values 1,2,3, . . . ;
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l, the analogue of the azimuthal quantum number, the values
0, 1, 2, . . . n-1; and m, the magnetic quantum number, the
values 0, ± 1, ± 2, . . . ±1.

Fig. 3
The eigenfunction iZ-ioo, the electron density p = tt2100, and the electron

distribution function D = 4   r2 p of the normal hydrogen atom as functions of
the distance r from the nucleus.

The normal state of the atom is that with   = 1, l = 0, m = 0.
The corresponding eigenfunction is

Vroo

' Z3 _ 
== e 2
 ·  0  (6)

CHEMICAL REVIEWS, VOL. V, NO. 2
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The quantity  2 as a function of the coordinates is interpreted as
the probability of the corresponding microscopic state of the
system; in this case the probability that the electron occupies a
certain position relative to the nucleus. It is seen from equation
6 that in the normal state the hydrogen atom is spherically
symmetrical, for is a function of r alone. The atom is further-
more not bounded, but extends to infinity; the major portion is,
however, within a radius of about 2a0 or 1Á. In figure 3 are

represented the eigenfunction   , the average electron density
p = ip’m and the radial electron distribution D = 4  rp for the
normal state of the hydrogen atom.

The energy values correponding to the various stationary
states are found from the wave equation to be those deduced
originally by Bohr with the old quantum theory; namely,

w*. = -

2 IT2 m e* Z2

n2 h2

Z2 e2

2 n2 a 0‘
(7)

The energy of the normal state of hydrogen is

W„ = - = - 13.54 v.e. (8)a 2 o0

IH, the ionization potential of hydrogen, accordingly is equal to
13.54 volts.

This simplified treatment does not account for the fine-structure
of the hydrogen spectrum. It has been shown by Dirac (22)
that the assumption that the system conform to the principles of
the quantum mechanics and of the theory of relativity leads to
results which are to a first approximation equivalent to attribut-
ing to each electron a spin; that is, a mechanical moment and a

magnetic moment, and to assuming that the spin vector can

take either one of two possible orientations in space. The
existence of this spin of the electron had been previously deduced
by Uhlenbeck and Goudsmit (23) from the empirical study of
line spectra. This result is of particular importance for the
problems of chemistry.
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IV. THE PERTURBATION THEORY OF THE QUANTUM MECHANICS.
THE RESONANCE PHENOMENON

The first-order perturbation theory of the quantum mechanics
(4, III) is very simple when applied to a non-degenerate state of
a system; that is, a state for which only one eigenfunction exists.
The energy change W1 resulting from a perturbation function f
is just the quantum mechanics average of / for the state in ques-
tion; i.e., it is

W1 = s f  * da (9)

As an example we may calculate the energy of the helium atom in
its normal state (24). Neglecting the interaction of the two
electrons, each electron is in a hydrogen-like orbit, represented by
equation 6; the eigenfunction of the whole atom is then      (1)
\pm (2), where (1) and (2) signify the first and the second electron.

e2
The perturbation function is the electronic interaction —; and

ri2
the perturbation energy is

W1 (i) *1 (2) dfii d02 (10)

in which subscripts refer to the two electrons. This integral has

the value § —.
8 a0

The energy of the unperturbed system was

Z2e2
(equation 7) — 2^- = —108.4 v.e., giving a total energy of

11 e2
---— or —74.5 v.e.

4 d0
The experimentally determined value is

— 78.8 v.e. Thus the first-order approximation reduces the
discrepancy from 29.6 v.e. to —4.3 v.e. A more accurate theo-
retical calculation (25) has led to —77.9 v.e.

If the unperturbed system is degenerate, so that several linearly
independent eigenfunctions correspond to the same energy value,
then a more complicated procedure must be followed. There
can always be found a set of eigenfunctions (the zeroth order
eigenfunctions) such that for each the perturbation energy is
given by equation 9; and the perturbation theory provides the
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method for finding these eigenfunctions (4, III). This result
is of importance for systems containing two or more electrons.
Let us consider, for example, an excited helium atom. Neglect-
ing the interaction of the two nuclei the system may be described
by saying that the electrons are in two different orbits, repre-
sented by the hydrogen-like eigenfunctions   and  , say. The
eigenfunction for the atom is, then,   (1)   (2). But on inter-
changing the electrons to give   (2)   (1) the energy of the system
is unchanged, so that the system is degenerate. The perturba-
tion theory leads to the result that the correct eigenfunctions are
not   (1)   (2) and   (1)   (2), but rather

*S = -L {*(1),(2) + ?(!)* (2)} (11»)

and

<  =-^{ {1) {2)
-  {1) {2)} (lib)

 *s is said to be symmetric in the coordinates of the two electrons,
for interchanging them leaves the eigenfunction unchanged,
while \KA is antisymmetric, for interchanging the electrons
changes the sign of the eigenfunction.

Substitution of these eigenfunctions in equation 9 leads to the
result

F»s = Hn + Hu ,12x
FiA = Hn - Hl2 K 1

with
 ffn = Sff    ) <p2(2) do, d02

Hu = f SÍ   (1) <p (1)   (2)   (2) do, d02.

If the electrons did not change positions; that is, if   (1)   (2) or

  (1)   (2) were the correct eigenfunction, the perturbation energy
would be Hn alone. The added or subtracted term Hn results
from one electron jumping from one orbit ( ) to the other ( )
at the same time that the other electron makes the reverse jump.
For this reason ± Hn is called the interchange or resonance

energy. This phenomenon, called the interchange or resonance

phenomenon, was discovered by Heisenberg and Dirac (26).
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There is no classical analogue of it save the trivial case of the
resonance of two similar harmonic oscillators.

The interchange energy of electrons is in general the energy of the

non-polar or shared-electron chemical bond.

V. THE PROPERTIES OF MOLECULES ACCORDING TO THE QUANTUM
MECHANICS

The procedure to be followed in the theoretical discussion of the
structure of molecules has been given by Born and Oppenheimer
(27), who applied the perturbation theory (to the fourth order)
to a system of nuclei and electrons. They showed that the
electronic energy is first to be calculated for various arrangements
of the nuclei fixed in space. The stable state will then be that for
which the so-calculated electronic energy added to the inter-
nuclear energy is a minimum. The nuclei will then undergo
oscillations about their equilibrium positions, with the electronic
and nuclear energy as the restoring potential; and the molecule
as a whole will undergo rotations about axes passing through its
center of mass.

The justification was also given for the assumption made
originally by Franck (12) that during an electron transition the
nuclei retain the configuration characteristic of the initial state.

These results were true for classical mechanics and the old
quantum theory, and had been assumed without proof by many
people before the work of Born and Oppenheimer was published.

The system to be considered consists of two nuclei and one
electron. For generality let the nuclear charges be ZAe and
ZBe. From Born and Oppenheimer’s results it is seen that the
first step in the determination of the stationary states of the
system is the evaluation of the electronic energy with the nuclei
fixed an arbitrary distance apart. The wave equation is

VI. THE HYDROGEN MOLECULE-ION

a. Numerical solution of the wave equation

(13)
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in which rA and rB represent the distance of the electron from
nucleus A and nucleus B respectively. If elliptic coordinates
£,  , and  , defined by the equations

, rA + rB

(14)
AB

  = COS'1
Vx2 +

in which rAB in the internuclear distance, be introduced, the
partial differential equation becomes separable into three total
differential equations. For introducing

  = S (f)   ( )   { ),
it reduces to

 2 
  2

= m2  

d   „ dsl / m2 \
T -1 dij+ v  *2 + 2 p *+ { =i+ µ) 

= 0

with 1 S i S 00

and
d   dHl / m2 \
   |_(1

" ^
d^J

+ V2
" 2 W + H = 0

in which

with — 1 S   S + 1

2 t2 m r\B W W
  ----- = p2-

b =

h2

rAB (ZA + ZT
2 o0

rAB (ZA ~

ZB~)

4 W,T

(15)

(16a)

(16b)

(16c)

2 a0 .
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and m, X, and µ are undetermined parameters. The solutions of
Equation 16a are known; in order that   be an eigenfunction
m must assume only the values 0, ±1, ±2, . . . Similarly in
order for   and H to be eigenfunctions X and µ must assume

specific values, with the accompanying determination of the
energy constant IF as a function of the nuclear separation rAB.

Many efforts have been made to solve these equations analy-
tically, but so far they have all been unsuccessful, and little has
been published regarding them. Some unsatisfactory work has
been reported by Alexandrow (28). Very recently a short report
of a paper read by Wilson before the Royal Society has appeared
(29). It is probable, in view of the vigor with which it is being
attacked, that the problem will be solved completely before very
long.

The problem has already been solved for the normal state of the
hydrogen molecule-ion (ZA = ZB = 1) by the use of numerical
methods. A rather complete account of these calculations of
Burrau (30) will be given here, since the journal in which they
were published is often not available.

The numerical solution of the equations was carried out in the
following way. For the lowest state m is equal to 0, and for
hydrogen, with ZA = ZB = 1, b = 0. Introducing new variables

 £ = — í yr and <r„ = — - Equations 16b and 16c     n H dr,

become

d»{   |2 — 2 (p —

<r{) 4 — µ

d~¡
= "i' I2 - 1

and

d      2 + 2     — µ-2 =   2--2_- 
d   1 1 —

7j2

For a given value of  ,    is expanded as a power series satisfying
Equation 16c' about the points   = 0 and   = 1 (or — 1). It is
found that these series coincide at   = 1/2 only when µ has a
certain value. In this way a relation between X and µ is found.

(16b')

(16c')
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For each value of µ a similar treatment is given Equation 16b',
resulting in the determination of the corresponding value of
p, and hence of the relation between IF and p. The results of the
calculation are given in table 2, taken directly from Burrau. The
electronic energy is given in the third column. To it must be

WHadded the internuclear energy (fourth column) to
tab p

obtain the total energy given in the fifth column.
The relation between W and p is shown in figure 4; that for

TV total in figure 5. It is seen that the equilibrium distance of
the nuclei is p = 2.0 ± 0.1, or r0 = 1.06 ± 0.05 Á. The corre-

sponding total energy is TFtotai = 1.204 ± 0.002 TFH or — 16.30

TABLE 2

Energy of the hydrogen molecule-ion

P  
W 4 

W3
"

p8

2

P

^total

0.0 0.000 4.000 CO CO

1.0 0.724 2.896 2.000 0.896
1.3 1.119 2.648 1.538 1.110
1.6 1.559 2.436 1.250 1.186
1.8 1.870 2.309 1.111 1.198
2.0 2.204 2.204 1.000 1.204
2.2 2.552 2.109 0.909 1.200
2.4 2.917 2.025 0.833 1.192
2.95 3.995 1.836 0.678 1.158

» 1.000 0.000 1.000

± 0.03 v.e. To this there is to be added the oscillational energy
\htí¡a of the lowest oscillational state. The frequency  „ is
obtained from the curvature of the TFtotai curve, and leads to \hw0

= 0.14 v.e. according to Condon, who corrected an error made by
Burrau (Condon’s value is reported by Birge (7)). The energy
of Hs+ in the normal state is thus

rHi+ = - 16.16 ± 0.03 v.e.

It is now possible to check the relation

!h2 + Ih2+ = d'h2 + 2 lH,
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in which D'Hj is the dissociation potential of hydrogen. With
IH, = + 15.34 v. (Section 2), and IH = + 13.54 v. This
equation leads to

 >22 = 4.42 v.e. = 102000 cal/mol.

for the energy of dissociation of the hydrogen molecule. This
is within the limit of error equal to the band spectrum value 4.34

0 1 2 3 4 5

Fig. 4. The Electronic Energy of the Hydrogen Molecule-ion in the
Normal State as a Function of the Distance Between the Two

Nuclei (Bureau)

± 0.10 v.e., and is to be accepted as the most accurate deter-
mination of the heat of dissociation of hydrogen.

The heat of dissociation of H2+ into H and H+ is

Dga+ = PFjj —

PFjja+ = 2.62 v.e.

No direct determination of this quantity has been made.
The value 2247 cm-1 for w0 for H2+ obtained by Birge (table 1)

leads to = 0.141 v.e., in very good agreement with the
theoretical 0.14 v.e.
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The average electron density \p2 as a function of position was
also found by Burrau. For the normal state  2 is represented in
figure 6, in which the contour lines pass through points of relative
density 1.0, 0.9, 0.8, . . . 0.1. The second curve represents
the values of  2 along the line passing through the two nuclei.
( 2 is cylindrically symmetrical about this line). It will be seen

that the electron is most of the time in the region between the
two nuclei, and can be considered as belonging to them both, and
forming a bond between them.

Fig. 5. The Total Energy of the Hydrogen Molecule-ion as a Function of

p (Bureau)

b. Application of the first-order perturbation theory

Although no new numerical information regarding the hydrogen
molecule-ion can be obtained by treating the wave equation by
perturbation methods, nevertheless it is of value to do this. For
perturbation methods can be applied to many systems for which
the wave equation can not be accurately solved, and it is desirable
to have some idea of the accuracy of the treatment. This can be
gained from a comparison of the results of the perturbation
method of the hydrogen molecule-ion and of Burrau’s accurate
numerical solution. The perturbation treatment assists, more-
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over, in the physical interpretation of the forces operative in the
formation of the ion; for the electronic energy is obtained as the
sum of terms each of which can be related without difficulty to a
visualisable process of interaction of the nuclei and the electron.

A hydrogen atom and a proton serve as the starting point of the
calculation. With the nuclei a distance rAB apart, and with the
electron attached to the nucleus A to form a hydrogen atom, the
zerotb order eigenfunction is

  =

  do

ÍA
(17a)

and the action of nucleus B on the electron is the perturbation.

Fig. 6. The Electron Density V-2 for the Hydrogen Molecule-ion in the
Normal State (Burrau)

The contour lines represent in section places of relative density 1.0, 0.9, 0.8,
. .0.1. The density at points along a line drawn through the nuclei is given above.

But the configuration with the electron on nucleus B and with the
eigenfunction

  (17b)

corresponds to the same energy. The unperturbed system is thus
degenerate. There is, however, no perturbation function for the
system as a whole, for in each case the interaction between the
electron and the more distant nucleus produces the perturbation;
and accordingly the usual theory for degenerate systems cannot
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be directly applied. It is instead found that on carrying out the
treatment used in the derivation of the ordinary perturbation
theory closely similar results are obtained. The correct zeroth
order eigenfunctions are linear aggregates of   and a, and are,
indeed, symmetric and antisymmetric in the two nuclei; they are

  = -y: 1: --j (  +  ) (18a)
V2 + 2S

and

with

in which

  =
1

V2 - 2 S
(  —  )

-J    da = e (1+p + l pj),

(18b)

(19a)

p assuming ZA ZB z.

The radicals in the denominators are necessary in order that the
new eigenfunctions be normalized. The wave equation (Equa-
tion 13) can now be written

Alt' +
8  JOT

nr (WH + W1 + ZA ei
+ zbAS—1^ = 0,

rB /
(20)

in which Wl is the perturbation energy. It is found (see Heitler
and London (39) for the detailed treatment of a similar problem)
that the perturbation energy for the eigenfunction   is given
by the solution of the equation

   +
8

nr da = o (21)

This leads to the result

W1
h + It
1 + s (22)
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in which

and

Cv
J rA

,
Z 1 -2p

do = — J--e
aa p H

u - f^do = i
J rA °°

e (1 + p).

(19b)

(19c)

The total energy, including the internuclear term, is then

tv = W — e2 + -

e<i

"Total " . 1 + S+ rAB
(23)

Fig. 7.

Curve 1 represents the total energy of the hydrogen molecule-ion as calculated
by the first-order perturbation theory; curve 2, the naive potential function
obtained on neglecting the resonance phenomenon; curve 3, the potential func-
tion for the antisymmetric eigenfunction, leading to elastic collision.

In figure 7 is shown the so-calculated total energy TFtotai for
H2+ as a function of p. Comparison with figure 5 shows that the
perturbation curve is too high; the force holding the ion together
is too small. Equilibrium occurs at p = 2.5 or rQ = 1.32 A
(correct value, 1.06 A), and the energy of the ion is then —15.30
v.e. (correct value, —16.30 v.e.).
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The eigenfunction   is represented qualitatively by figure 6,
but is somewhat more extended, for the contracting influence of
the second nucleus has not been taken into account.

It is of interest to calculate the energy corresponding to the
single eigenfunction   (or  ); i.e., to find the interaction of a

proton and a hydrogen atom that would result if the electron

Fig. 8

The contour lines represent points of relative density 1.0, 0.9, 0.8,..0.1 for a

hydrogen atom. This figure, with the added proton 1.06 Á from the atom, gives
the electron distribution the hydrogen molecule-ion would have (in the zeroth
approximation) if the resonance phenomenon did not occur; it is to be compared
with figure 6 to show the effect of resonance.

were not allowed to jump from one nucleus to the other. For
this case

and

W1 = — e* h

"rota! - - «* h + ~· <“>
TAB

(The perturbation energy is here just the electrostatic energy
calculated for the electron distribution given by  2; it is in part
this feature of the perturbation theory which led Schródinger to
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proclaim that the electron is smeared through space, and which
supports the present interpretation of  2 as the probability that
the electron will be in the selected region.) This naive potential
is also represented in figure 7. It leads to a repulsive force at all
distances. The correct perturbation calculation given in Equa-
tion 23 differs from the naive one in that it involves consideration
of the interchange or resonance phenomenon, and leads to an

attraction, giving an energy of formation of H2+ of about 1.62 v.e.

(correct result from Burrau, 2.62 v.e.). We thus see that the
fact that the electron can jump from one nucleus to the other—in
other words, is shared between the two nuclei— is mainly respon-
sible for the formation of the molecule-ion H2+ from H+ and H.
The way the electron distribution is affected by the resonance

phenomenon is seen by comparing figure 6 with figure 8,
which shows contour lines (of electron density  2) for a

hydrogen atom and a proton at the distance p = 2 (1.06 A).
This comparison is particularly effective in showing that the
sharing of the electron between the two nuclei results from the
resonance phenomenon.

This resonance energy leads to molecule formation only if the
eigenfunction is symmetric in the two nuclei. The perturbation
energy for the antisymmetric eigenfunction   is

also shown in figure 7, leads to strong repulsion at all distances.
This eigenfunction does not, then, give rise to a stable excited
state of the hydrogen molecule-ion. Stable excited states will,
however, correspond to the symmetric eigenfunctions relating to
the various excited states of the hydrogen atom; and in each case

(at least until deformation becomes very pronounced) not to the
antisymmetric eigenfunctions. This is contrary to the qualita-
tive scheme of levels given by Hund (31), who in a series of papers

(25)

and the total energy,

(26)
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(32) has considered the application of the quantum mechanics to
molecules in general, with particular reference to molecular
spectra.

The above perturbation treatment of the hydrogen molecule-
ion has not before been published.

An attempt was made by Unsold (33) to evaluate to the second-
order the interaction of a proton and a hydrogen atom. He
found, neglecting the resonance phenomenon, that the second-
order perturbation energy is given approximately by the expres-
sion

in which Ei ( — 2p) represents the integral logarithm with the
argument — 2p. This expression is accurate for large values of

of a hydrogen atom, has the value 0.667 X 10~24 deduced from
the second-order Stark effect energy (34).

Using this expression and the value given in Equation 24 for
the first-order perturbation, Unsold found that equilibrium
would occur at p = 1, ra = 0.53 Á; and that the electronic energy
of the hydrogen molecule-ion would then be —1.205 Ws, or

— 16.31 v.e., in exact agreement with Burrau’s value. This
agreement is, however, misleading, and indeed the calculation is of
no significance, for Unsold neglected to consider the resonance

phenomenon, making use instead of the naive first-order pertur-
bation. We may, however, attempt to rectify this by adding the
second-order energy TF2 to the correct first-order energy of Equa-
tion 23. When this is done it is found that equilibrium occurs at
p = 1.2, r0 = 0.64 A, and that the energy then is —17.95 v.e.

c. The second-order perturbation calculation

(27)

p; for it then reduces to — § ——, in which a, the polarizability
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The results of Burrau’s calculation, of the first-order perturbation
treatment, and of the second-order treatment are given in table 3.

It will be seen that the second-order treatment leads to results
which deviate more from the correct values than do those given
by the first-order treatment alone. This is due in part to the
fact that the second-order energy was derived without considera-
tion of the resonance phenomenon, and is probably in error for
that reason. The third-order energy is also no doubt appreciable.
It can be concluded from table 3 that the first-order perturbation
calculation in problems of this type will usually lead to rather
good results, and that in general the second-order term need not
be evaluated.

TABLE 3

The properties oj the hydrogen molecule-ion

P ro Wjr +
H2

2.0 1.06Á —16.30v.e.
2.5 1.32 -15.30
1.2 0.64 -17.95

\ , and to give
P AB

In dealing with problems of molecular structure it has been
customary in the past to introduce the energy of polarization of

one atom or ion by another ion in the form

a the value it possesses in a uniform field. The form of Equation
27 shows that this is not a good representation of the polarization
energy, for it gives values which are much too large at small
distances. Indeed, if we attach this term to the first-order
energy of Equation 23, it is found that the correct equilibrium
distance r0 = 1.06 A results only if a be placed equal to 0.032 X
10~24, which is only 5 per cent of the true polarizability of hydro-
gen. This indicates that in general better results will be obtained
in the theoretical treatment of the structure of molecules by
ignoring polarization completely than by introducing the usual
expression for the polarization. As a matter of fact, it has already
been pointed out by Fajans (35) that the experimental values of
the heat of sublimation of the alkali halides agree better with
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those calculated by Reis (36), who neglected polarization, than
with those of Born and Heisenberg (37), who took it into con-

sideration. As a result of this it is probable that the numerous
discussions of molecular structure based on polarization (38) are
of only limited significance.

VII. THE HYDROGEN MOLECULE

a. Perturbation treatment of the interaction of two hydrogen atoms

The most satisfactory treatment which has been given the
structure of the hydrogen molecule is that of Heitler and London

A B
Fig. 9. Diagrammatic Representation of the Eigenfunctions for Two

Hydrogen Atoms

Fig. 10. Diagram Showing the Symbols Used for the Various Internuclear
and Interelectronic Distances

(39). The system to be treated consists of two nuclei A and B
and two electrons 1 and 2. In the unperturbed state two hydro-
gen atoms are assumed, so that the zeroth-order energy is 2ITH.
If the first electron is attached to nucleus A and the second to
nucleus B, the zeroth-order eigenfunction is   (1)   (2), in which
  and   are the functions given in Equations 17a and 17b. The
state obtained by interchanging the two electrons,   (1)  {2),
corresponds to the same zeroth-order energy, so that the system
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is degenerate, and must be treated in a way similar to that applied
to the hydrogen molecule-ion in Section VIb.

The wave equation for the hydrogen molecule with fixed nuclei
is

8 2   .
2 W„ + Wl + — + —

Ai Bi

e¿ e!

rAs rBi
~

r 12 AB
  = 0 (28)

in which  , and  , represent the second differential operations
with respect to the coordinates of the first and the second electron
respectively, and the various r’s refer to the distances indicated
in figure 10. The correct zeroth-order eigenfunctions are found
by the procedure of Section VIb to be the symmetric

*H,--7
1

ivKD  {2) +  (1)  {2)} (29a)
V 2 + 2S«

and the antisymmetric

  .--7
1

'  {*(1)  {2) - ¥>(1)  {2)} (29b)! V 2 - 2 5!

in which S is given by Equation 19a.
In this case, too, molecule formation results from the symmetric

eigenfunction. The corresponding perturbation energy W1 is
obtained from an equation of the type of Equation 20 involving
 · 2 and the wave equation 28. It is

e2 fl + £2 )^ =  +& ¡77" + u + h - 2 h - 2 S/2I (30)

in which Ii and /2 are given by Equations 19b and 19c, and 14
and 16 by

  1) ¥>H2)

Tn
    dn2

Z fl
a0 Ip

— 2 p
e

3 1
+ JP + 74 6

(19d)

and

Is  ( 1) ¥>(1)  (2) < (2)
ri2

      2
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25 23
, „

1“ + P + 3 p2 + (31)

6 Í
+ -

|S2
(y + log p) + S'2 E¡(— 4 p) - 2 SS’ E¡(- 2 p)

in which 7 = 0.5772 . . is Euler’s constant, and S' = ep (1 — p

+ i p2)·

(19e)

0 1 2 3 4 5 6

p~*
Fig. 11

Curve 1 shows the total energy for the normal state of the hydrogen molecule
as given by the first-order perturbation theory; curve 2, the naive potential
function obtained by neglecting the resonance phenomenon; and curve 3, the
potential function for the antisymmetric eigenfunction, corresponding to elastic
collision.

The energy W1 depends largely on the integral h, for which
Heitler and London gave only an approximation. The difficult
problem of carrying out this integration was solved by Sugiura
(40), whose result is given in Equation 19e. W1 is shown as a
function of pin figure 11. It has a minimum at the equilibrium
distance p = 1.5, at which W1 = —3.1 v.e. The comparison of
theory and experiment for the hydrogen molecule is shown in
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table 4. The general agreement is entirely satisfactory in view
of the fact that only the first-order perturbation calculation has
been made.

It is worthy of mention that the perturbation terms are actually
e2

larger than appears from W1. Thus at p = 1.5 the term —

i'ab
has the value 18.1 v.e., so that the electronic perturbation energy
is —21.3 v.e., which is to be compared with the experimental
value —22.5 v.e. It is seen that the electronic perturbation
energy is thus in error by only 5 per cent. Furthermore, we saw
in Section VIb that the first-order perturbation calculation for
the hydrogen molecule-ion gave an energy of dissociation of H2+
of 1.62 v.e., which is 1 v.e. smaller than Burrau’s correct value.
A similar error is to be expected for the hydrogen molecule; and,
as a matter of fact, the calculated energy of dissociation is here
1.2 v.e. too small. We are hence justified in the belief that the

TABLE 4

Properties of the hydrogen molecule

ro I» D=, “o

Calculated........... 0.80 Á 0.53 X 10-«° g. cm.’ 3.2 v.e. 4800 cm.""1
Observed............. 0.76 0.48 4.42 4262

accurate theoretical treatment of the hydrogen molecule would
give results in complete agreement with experiment.

By bringing the nuclei into coincidence a helium atom in the
normal state is formed; and a value for its energy can be obtained
from the expression for the hydrogen molecule by neglecting the
internuclear energy and by putting p = 0. It is found that Wh.

19
_ _ — ei/a0 = —64.3 v.e., which lies considerably above the

O

experimental value —78.8 v.e.; the error is in the same direction
as that for DH,+. A similar limiting calculation for the hydrogen
molecule-ion gives TFHe+ = —3e2/2a0 = —40.6 v.e., instead of
the correct value —4IFH = —54.16 v.e. Thus for both He and
He+ this perturbation treatment is inaccurate. The treatment
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gives, however, 64.3 — 40.6 = 23.7 v. for the first ionisation
potential of helium, which is in good agreement with the experi-
mental 24.6 v. This agreement was adduced by Suguira as
evidence of the accuracy of the perturbation treatment; but it
is merely accidental.

If   (1)   (2) or   (1)   (2) alone were to be considered, the
perturbation energy would be the electrostatic energy of two
nuclei and two electrons distributed according to the probability
functions  2 and  2; namely,

W1 = e= + U-2h
AB

e1 -2 p
— e
a0

(31)

This, the naive potential function, is also shown in figure 11. It
corresponds to a relatively small attraction, so that the con-
clusion can be drawn that in the hydrogen molecule the inter-
change energy of the two electrons is the principal cause of the
forces leading to molecule formation.

b. The application to the hydrogen molecule of Burrau’s numerical
solution for the molecule-ion

If the interaction of the two electrons in the hydrogen molecule
were small it could be neglected with respect to the electronic-
nuclear interaction. Each electron would then be represented
by an H2+ eigenfunction, and the electronic energy would be
just twice that calculated by Burrau. The interelectronic energy
could then be calculated as a perturbation; this would necessitate,
however, a knowledge of Burrau’s eigenfunctions in a form suit-
able for integration.

Lacking this knowledge, Condon (41) made use of the following
semi-empirical method. The electronic energy of the helium
atom is raised from —4 e2/a0 = —108.32 v.e. (Burrau’s value)
to —78.8 v.e. (the experimental value) by the electronic inter-
action. If it be assumed that the interelectronic energy is to be
raised to the same fractional value of the Burrau energy through-
out the region corresponding to the normal state of the hydrogen
molecule, there is obtained the electronic energy function shown
in figure 12. Adding to this the electronic energy e2/rAB, it is
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found that equilibrium occurs at r0 = 0.73 Á, with DH, = 4.3 or

4.4 v.e. and  0 = 7600 cm.-1. These values, except for  0, are

in excellent agreement with the experimental ones.

This treatment is, however, of less significance than that of the
preceding section, for it is more arbitrary and less confidence can

be placed in it. In the first place, the interelectronic forces are

not small, and it is to be expected that they will cause the electrons
to tend to remain on different atoms, as is assumed in the previous

o 1 2 3
p—*

Fig. 12

Curve 1 shows the electronic energy of the hydrogen molecule neglecting inter-
electronic interaction (from Burrau’s solution for the molecule-ion); curve 2, the
electronic energy empirically corrected by Condon’s method; and curve 3, the
total energy of the hydrogen molecule, calculated by Condon’s method.

treatment of Heitler and London. The assumption that the
total electronic energy as calculated by Burrau should be reduced
in a constant ratio is, moreover, without justification. It is
definitely incorrect for p large; for the doubled Burrau energy
then approaches the correct value 2WS. An assumption which
might just as well be made and which is satisfactory both for
p = 0 and for p = oo is that the difference between the doubled
Burrau energy and 2TTH is to be reduced in a constant ratio;
but it leads to the incorrect values DHl = 8.0 v.e. and ra = 0.90 Á.
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c. The excited states of the hydrogen molecule

Excited states of the hydrogen molecule may be formed from a

normal hydrogen atom and a hydrogen atom in various excited
states.2 For these the interelectronic interaction will be small,
and the Burrau eigenfunction will represent the molecule in part
with considerable accuracy. The properties of the molecule, in
particular the equilibrium distance, should then approximate
those of the molecule-ion; for the molecule will be essentially a

molecule-ion with an added electron in an outer orbit. This is
observed in general; the equilibrium distances for all known
excited states but one (the second state in table 1) deviate by less
than 10 per cent from that for the molecule-ion. It is hence
probable that states 3, 4, 5, and 6 are formed from a normal and an
excited atom with   = 2, and that higher states are similarly
formed.

The exceptional state B has a very large equilibrium distance
and small oscillational frequency, as has been pointed out by
Birge (7). This suggests that the molecule is here not non-polar,
but is a polar compound of H+ and H-. The electron affinity of
hydrogen is probably negative, (about —1 kcal/mole (42)), and
it is doubtful that a free negative hydrogen ion in the normal
state can exist. The presence of another proton would, however,
stabilize the structure, so that a polar hydrogen molecule could
be formed. The unperturbed system is again degenerate, for
both electrons may be attached to nucleus A or to nucleus B.
The zeroth-order eigenfunction representing the most stable
polar state of the molecule is

.........

{ *(1) *(2) +  (1) *(2)}. (32)
V2 + 2 8*

The first-order perturbation theory in this case does not give good
results, since the mutual interaction of two electrons on one

nucleus is so large as to greatly deform the eigenfunctions; it leads

8 The calculation of the potential function for these states with the use of the
method of Heitler and London is being made by Prof. E. C. Kemble (private
communication to Dr. J. R. Oppenheimer).
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to an equilibrium distance of about 1Á and an energy about 5 v.e.

greater than the normal state. There is no energy level of the
molecule in this region. The attempt to take into account the
effect of deformation has led to the conclusion that both rQ and
the energy should be increased to values compatible with those
observed for the first excited state B. Since a polar state is to be
expected in this region and since B has properties explicable on

Fig. 13. Qualitative Representation by Contours of Electron Distribu-
tion for Two Hydrogen Atoms Uniting to Form

a Molecule (London)

this basis but not otherwise, the identification of the two may be
made with some certainty.

We shall next consider whether or not the antisymmetric
eigenfunction     for two hydrogen atoms (Equation 29b)
would lead to an excited state of the hydrogen molecule. The
perturbation energy is found to be

e2 1-- 4- li - h - 2 7, + 2 SI2\
TAB J

W1 =

1 - S2 (33)
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This potential differs from that of Equation 30 in that the inter-
change energy has the opposite sign (and slightly different magni-
tude). As a result it corresponds to repulsion between the two
atoms at all distances, and not to a stable state of the molecule
(see figure 11). This result, which had been suggested as a

possibility by Hund (31), was proved by Heitler and London.
The existence of two potential functions representing the
interaction of two normal hydrogen atoms is very remarkable
and has, I believe, no classical interpretation. A certain feeling

Fig. 14. The Electron Distribution for Two Hydrogen Atoms in Elastic
Collision (London)

for the phenomenon results from the study of the distribution of
the two electrons in the two cases (London, 46). In figure 13,
representing the two hydrogen atoms in the process of forming a

molecule, it is seen that the electrons tend to assume positions
between the two nuclei, and form a bond between them·—the
shared electron-pair. But if the potential function represents
elastic collision (the antisymmetric eigenfunction) the electrons
take up positions on. the outer sides of the atoms (fig. 14), with the
result that the strong internuclear repulsion becomes effective.

VIII. THE PAULI EXCLUSION PRINCIPLE. THE INTERACTION OF
TWO HELIUM ATOMS

It was mentioned in Section III that the fine-structure of
spectra arises from a phenomenon equivalent to a first approxi-
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mation to that resulting from a spin of the electron. The spin
moment of the electron can assume two orientations in space,
which may be represented by spin eigenfunctions a and ß. In the
foregoing sections discussion has been given only to eigenfunctions
referring to the electronic positions. A complete eigenfunction is
the product of a positional eigenfunction and a spin eigenfunction,
as   a or   ß.

The observed structure of the spectra of many-electron atoms
is entirely accounted for by the following postulate: Only
eigenfunctions which are antisymmetric in the electrons; that is,
change sign when any two electrons are interchanged, correspond to
existant states of the system. This is the quantum mechanics
statement (26) of the Pauli exclusion principle (43).

It is equivalent to saying that two electrons cannot occupy the
same orbit. Thus there is no antisymmetric eigenfunction
composed of   (1) a (1) and   (2) a (2), and no such state exists

(for the helium atom, say). The allowed state is - 
{   (1) a (1)

  (2) ß (2) —   (1) ß (1)   (2) a (2)}; that is, in the normal state
of the helium atom the two electrons have oppositely directed
spins. Other consequences of the exclusion principle, such as
that not more than two electrons can occupy the K-shell of an

atom, follow directly.
In dealing with systems containing only two electrons we have

not been troubled with the exclusion principle, but have accepted
both symmetric and antisymmetric positional eigenfunctions; for
by multiplying by a spin eigenfunction of the proper symmetry
character an antisymmetric total eigenfunction can always be
obtained. In the case of two hydrogen atoms there are three

symmetric spin eigenfunctions a (1) a (2), ß (1) ß (2), and
~^=

{ a (1) ß (2) + ß (1)   (2)}, and one antisymmetric, -L { a (1)

ß (2) — ß (1) a (2)}. The last is required to make the symmetric
positional eigenfunction     of Equation 29a conform to Pauli’s
principle, and the first three for the antisymmetric    . Since
the a priori probability of each eigenfunction is the same, there



208 LINUS PAULING

are three chances that two hydrogen atoms will repel each other
to one that they will attract.

But if the system contains more than two electrons explicit
consideration must be given the spins. This is particularly
evident in the problem of the interaction of two helium atoms.
There are four individual eigenfunctions   ,  ß,   , and  ß, which
are to be occupied by the four electrons. The only eigenfunction
allowed by Pauli’s principle for the system is

 (1) «(1) *(1) 5(1) ¥>(1) “(1) Í>(1) 5(1)

 (2) «(2)  (2) 0(2) ¥>(2) e(2) v(2) 5(2)

¿(3M3) *(3) 5(3) 03 *>(3) 5(3)

m «(4) *(4) 5(4) v(4) a(4) *>(4) 5(4)

(o is a factor of such value as to make the eigenfunction nor-

malized.)
It will be seen that this is antisymmetric, for interchanging

any two electrons is equivalent to interchanging two rows of the
determinant, and hence to changing its sign.

Substitution of this eigenfunction in an expression of the type
of Equation 21 permits the evaluation of the perturbation energy
Wx, in the course of which use is made of the properties of ortho-
gonality and normalization of the spin eigenfunctions; namely,

fa* cU = /ß* de = ll (35)
fa ß de = 0. I

in which « is the variable occurring in the spin eigenfunctions.
The value of one further integral is also needed:

-If **(1) <P(2) y(2)
rn

 ,      

,  +
s

+'
(19f)

The potential function obtained is only approximately correct,
for the eigenfunctions are in fact largely perturbed by the inter-
electronic interaction. There are no forces tending to1 molecule
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formation, but instead repulsion at all distances. The van der
Waals’ attractive force (which is very small for helium) does
not appear, and the repulsive force is much larger than the actual
one; these discrepancies are no doubt due to the inaccuracy of
the calculation.

It is of interest to carry out the evaluation of the naive poten-
tial function obtained from the eigenfunction   (1) a (1)   (2)
ß (2)   (3) a (3)   (4) ß (4); i.e., with the neglect of the interchange
energy of the electrons. This potential leads to a strong attrac-
tive force, with the formation of molecules He2 with about 10,000
or 15,000 cal/mole dissociation energy. The resonance phenom-
enon is accordingly largely responsible for the very small van
der Waals’ forces in helium; without it the boiling point of
helium would be around room temperature.

IX. OTHER RELATED PROBLEMS. THE EXTENSION OF THE THEORY

The interaction of two alkali metal atoms is to be expected to
be similar to that of two hydrogen atoms, for the completed shells
of the ions will produce forces similar to the van der Waals’
forces of a rare gas. The two valence electrons, combined
symmetrically, will then be shared between the two ions, the
resonance phenomenon producing a molecule-forming attractive
force. This is, in fact, observed in band spectra. The normal
state of the Na2 molecule, for example, has an energy of dissocia-
tion of 1 v.e. (44). The first two excited states are similar, as is
to be expected; they have dissociation energies of 1.25 and 0.6
v.e. respectively.

In an atom of the second column of the periodic system, such
as mercury, the two valence electrons are in the normal state
s-electrons, and form a completed sub-group. Two such atoms
would hence interact in a way similar to two helium atoms;
the attractive forces would be at most very small. This is the
case for Hg2, which in the normal state has an energy of dissocia-
tion of only 0.05 v.e. But if one or both of the atoms is excited
strong attractive forces can arise; and indeed the excited states
of Hg2 are found to have energies of dissociation of about 1 v.e.
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Similarly two Hg+ ions will attract each other with some force to
form the stable Hg2++ ion long recognized by chemists.

The application of the quantum mechanics to the interaction
of more complicated atoms, and to the non-polar chemical bond
in general, is now being made (45). A discussion of this work
can not be given here; it is, however, worthy of mention that
qualitative conclusions have been drawn which are completely
equivalent to G. N. Lewis’s theory of the shared electron pair.
The further results which have so far been obtained are promising;
and we may look forward with some confidence to the future
explanation of chemical valence in general in terms of the Pauli
exclusion principle and the Heisenberg-Dirac resonance phenom-
enon.

NOTE ADDED IN PROOF

Since the submission of this article for publication a number of
pertinent papers have appeared.

 . A. Wilson (Proc. Roy. Soc. London, A 118, 635 (1928);
see also (29)) states that no functions satisfying the wave equation
for the hydrogen molecule-ion and bounded everywhere exist.
There are, however, solutions which become logarithmically
infinite along the nuclear axis and are bounded elsewhere. These
solutions would not be considered eigenfunctions if the usual
definition is retained; but would be in case the restriction that the
eigenfunction be bounded everywhere were replaced by the
restriction that it be quadratically integrable. Wilson has made
this assumption, and has found that the so-calculated properties
of the hydrogen molecule-ion in the normal state are approxi-
mately those given by Burrau. An accurate treatment and the
consideration of excited states have not been published.

A treatment of the hydrogen molecule by the Ritz method,
applied to helium by Kellner (25), has been reported by S. C.
Wang (Phys. Rev., 31, 579 (1928)). With this method the
individual eigenfunctions   and   (equation 29) are taken to be
the hydrogen-like eigenfunctions of an atom with atomic number
Z differing from unity. The value found for Z is 1.166, and the
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corresponding constants of the hydrogen molecule in the normal
state are

r„ = 0.75 Á, I0 = 0.459 x 10~4° g. cm.2, Dhj = 3.76 v.e.,  0 = 4900 cm-1.

Comparison with table 4 shows that these values are in somewhat
better agreement with the observed ones than are Sugiura’s.

B. N. Finkelstein and G. E. Horowitz (Z. f. Physik, 48, 118
(1928)) have similarly applied the Ritz method to the hydrogen
molecule-ion, obtaining the following values:

Z = 1.228, p^2,r„s 1.06 A, Wh2+ = - 15.75 v.e.

These results are better than those given by the perturbation
theory (table 3).

F. R. Bichowsky and L. C. Copeland (J. Am. Chem. Soc., 50,
1315 (1928)) have made a direct determination of the heat of
formation of molecular hydrogen, leading to the value DH, =

105000 ±3500 cal/mole.
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