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Problem Set 4 
Note: The problems labeled with a star (★) are somewhat lengthy or tricky in the derivations. You are 
encouraged but not obligated to solve them for extra credits.  
 

Lecture 12 

Question 1. We can use the following classical toy model to examine the behavior of the solute 

molecules in a solvent (in one-dimensional space): 

 
A solute molecule as a whole is represented by a cart with mass m = 1 (natural unit). Let us consider 

two neighboring solute molecules as two frictionless carts which are connected by a spring (with 

a force constant k2, which characterizes the weak interaction between these two solute molecules). 

The interaction between the surrounding solvent and the solute molecule is represented by a spring 

(with a force constant k) connecting the solute (cart) with a fixed wall (environment). 

(1) Solve for the normal-mode frequencies and the corresponding displacements of the solute 

molecules as a function of time x1(t), x2(t) (i.e., the particular solutions correspond to the normal 

mode).  

(2) Let us set the phase angle to be zero, and k = 9, k2 = 1 (natural unit). At time t = 0, the solute 

molecule on the left is away from the equilibrium position by A, i.e., x1 = A > 0, and the solute 

molecule on the right is at its equilibrium position, i.e., x2 = 0. Consider the general solutions x1(t) 

and x2(t) now. Plot x1(t), x2(t) with respect to t (please cover at least for t = 0 – 100). 

(3) Following question (2), now express the motions in terms of the normal coordinates Q1(t), Q2(t). 

Plot Q1(t) and Q2(t), and analyze what you have seen in question (2).  

 

Question 2. A diatomic molecule AB is confined on a 2D plane. 

(1) Let us first consider a fixed Cartesian coordinate system (i.e., it does NOT rotate or translate 

with the molecule), of which the origin is NOT on the molecule. The mass for atom A is m1 and 

atom B is m2, and the potential energy function , in which r1 and r2 are the position V = 1
2
k r1 − r2
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vectors for A and B respectively.  

(a) Please construct the Hessian matrix by using the mass-weighted Cartesian coordinates 

(2D plane), and solve for all the normal modes and the corresponding frequencies.  

(b) Can you identify the character of each mode? How many non-zero-frequency modes do 

you have? Is this consistent with your expectation for a linear molecule in 2D space?   

(c) For the non-zero-frequency modes, which atom has a larger Cartesian-coordinate 

displacement, the heavier atom or the lighter atom? 

(2) Next, let us consider a Cartesian coordinate system sticking to the molecule (rotating and 

translating with the molecule) with the origin being at the center of mass and the x-axis as the bond 

axis A–B. Construct the Hessian matrix by using the mass-weighted Cartesian coordinates again, 

and solve for the normal modes. Does the choice of the coordinate system affect the actual 

vibrational frequency? 

 

Lecture 13 

Question 3. (1) Consider , please show that if F does not explicitly depend 

on x, then the Euler-Lagrange equation can be written as: , in which c is a constant. 

Hint: Start from  and substitute  with  (Euler-Lagrange equation); 

and then consider the total derivative of .    

★(2) Prove that the shortest distance between two points on the surface of a sphere lies on a great 

circle.  

Hint: Use the spherical coordinates to express the distance between two points on a sphere as 

a line integral (note: on a given sphere with a fixed radius r, dr = 0), and then use the result in 

question (1) to show that the equation obtained from the variational principle represents a plane 

that passes through the center of the sphere.  

Useful integral:   

I = F y(x), ′y (x)⎡⎣ ⎤⎦dx∫

′y ∂F
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(3) Determine the curve (in the first quadrant) of a fixed length which passes through the points 

(0, 0) and (1, 0) and for which the area between the curve and the x axis is a maximum. 

 

Question 4. Let us determine the path that minimizes the time that a particle will take to reach a 

lower point B along a flexible, frictionless wire under the force of gravity if it is released from rest 

from a higher point A.  

(1) Set an upside-down coordinate system, i.e., the lower point B has larger (positive) y value than 

the higher point A, so that mgy represents the loss of the potential energy. Show that the optimal 

curve y(x) = 0 satisfies the following differential equation:  

 

(2) Validate that the parametrized curve  satisfies the above differential 

equation. This curve is called a cycloid, which can be viewed as the curve traced by a point on the 

rim of a rolling cycle.    

 

Question 5. Evaluate the functional variation  for the energy functional 

 . 

 

Lecture 14 

Question 6. Let  be the ground-state trial function and  the exact ground state, both of 

which are normalized. Consider the deviation of  from : . Please prove: 

, where the variational energy , the exact ground-state energy 

 and the exact first excited-state energy .   

 

dx = y
c − y

⎛
⎝⎜

⎞
⎠⎟

1/2

dy

x = c
2
θ − sinθ( )

y = c
2
1− cosθ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

δ E[ρ(r)]
δρ(r)

E[ρ(r)]= c ρ(r)5/3∫ dr + ρ(r)v(r∫ )dr + 1
2

ρ(r1)ρ(r2 )
r12

∫∫ dr1dr2

φ ψ 1

φ ψ 1 Δ = 1− ψ 1 φ
2

E − E1 ≥ (E2 − E1)Δ E = φ Ĥ φ

E1 = ψ 1 Ĥ ψ 1 E2 = ψ 2 Ĥ ψ 2
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Question 7. A particle is trapped in a 1D box  with infinitely high potential walls. 

Consider the following trial function: 

 

in which N is the normalization constant, and λ is the variational parameter. Calculate the 

variational ground-state energy, and compare its value to the exact one.  

 

Question 8. In nuclear chemistry, the interaction between a proton and a neutron inside a 

deuterium (D) nucleus can be described by: V(r) = –V0e–r/a, in which V0 = 32.7 MeV, a = 2.16 fm. 

Consider using the hydrogen 1s orbital as the trial function, i.e.,  in which  is the 

variational parameter and N the normalization constant. Calculate: (1) The variational ground-state 

energy; (2) The most probable radius; (3) The expectation value of the radius.  

Note: This two-body problem is equivalent to a single particle with the mass being the reduced 

mass of a proton and a neutron, i.e., μ = mPmN/(mP+mN), under the central potential V(r). The 

experimental ground-state energy for the D nucleus is – 2.23 MeV.  

Hint: (a) Do not forget that you will need to do the integrals in the spherical coordinate 
𝑑𝜏 = 𝑟!𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙 

(b) Laplacian in the spherical coordinate 

∇!=
1
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𝜕𝑟. +
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𝜕
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(You do not have angular part in your trial function!) 

(c) Use a numerical program (e.g., MATLAB) to solve a quartic algebraic equation.  

(d) Useful integral: By integrating by part successively, one can show the following (n: an integer) 

3 𝑥"𝑒#$%𝑑𝑥
&'

(

=
𝑛!
𝑎"&) 

 

★Question 9. In this question, we examine the relation between the eigenvalues of a Hermitian 

matrix and its submatrices, and prove Cauchy’s interlace theorem. Consider the D by D matrix M 

−a ≤ x ≤ a

φ(x) =
N (a2 − x2 )(a2 − λx2 ) x < a

0 x ≥ a

⎧
⎨
⎪

⎩⎪

φ(r) = Ne
−λr
2a λ
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and its d by d submatrix m:  

 

We denote the orthonormal eigenvectors of M by B1, B2, ..., BD and the eigenvalues by 

. Likewise, for the orthonormal eigenvectors and the eigenvalues of m, we use 

the notation b1, b2, ..., bd and . In the following, we shall regard the eigenvectors 

bk as vectors in the full D-dimensional space, with the last D – d elements set equal to 0. The 

eigenvectors bk may then be expanded in the eigenvectors BK in the usual manner: . 

(1) Show that the lowest eigenvalue of m is an upper bound to the lowest eigenvalue of M:   

(2) Show that  in which X is orthogonal to all BK with K < i.  

(3) Assume that the square matrix containing  with  and  is 

nonsingular. Show that the coefficients ak in the expression  can be chosen such 

that ci becomes orthogonal to all BK with K < i. 

(4) Using (2) and (3), show that, for , the inequality  holds if the matrix 

containing  with  and  is nonsingular. 

(5) Show that the highest eigenvalue of M is an upper bound to the highest eigenvalue of m: 

. Also show that, for , the inequality  holds if the matrix containing 

 with  and  is nonsingular. 

(6) Show that, under the usual assumptions, the above results imply the inequalities 

 and that, for the special case of d = D – 1, we obtain 

 

 

Lecture 15 

Question 10. In this question, let us consider the variational treatment of a 1D Helium atom. The 

electrons are constrained in 1D space, and the electron-nucleus and electron-electron interactions 

are approximated by the Dirac delta functions. The electrons in the 1D Helium atom are governed 

M = m V
V† W

⎛

⎝
⎜

⎞

⎠
⎟

E1 ≤ E2 ≤!≤ ED
e1 ≤ e2 ≤!≤ ed

bk = aKBK
K=1

D

∑

E1 ≤ e1

X†MX
X†X

≥ Ei

BK
† bk 1≤ K < i 1≤ k < i

ci = bi + akbk
k=1

i−1

∑

1< i ≤ d Ei ≤ ei
BK
† bk 1≤ K < i 1≤ k < i

ed ≤ ED 1≤ i < d ed−i ≤ ED−i
BD−K
† bd−k 0 ≤ K < i 0 ≤ k < i

Ei ≤ ei ≤ Ei+D−d
E1 ≤ e1 ≤ E2 ≤ e2 ≤ E3 ≤!≤ Ed ≤ ed ≤ Ed+1
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by the following Hamiltonian: , in which x1 

and x2 are the coordinates of electron 1 and 2, and Z is the nuclear charge for the Helium atom (Z 

= +2). Use the normalized trial function , in which  is the variational 

parameter (the effective nuclear charge felt by an electron), determine the ground-state energy. 

Useful integral:       

 

Question 11. Calculate the resonance integral (in atomic unit) for H2+ in the minimal basis: 

  (Express your result in terms of the internuclear distance R only.)    

 

Question 12. Consider a linear H3 molecule. The wavefunctions may be modelled by expressing 

them as , in which si denotes the hydrogen 1s orbital of the relevant atom. 

Let us assume that and the overlap matrix S is an 

identity matrix. Solve for the energy levels variationally (in terms of the parameters  and ), 

and schematically plot the corresponding molecular orbitals.  

 

Question 13.  In this question, we shall prove that the variationally determined approximated 

electronic wavefunction of a molecule satisfies the virial theorem: , in which T is 

the total kinetic energy operator including the nuclear motions.  

(1) Write down the electronic Hamiltonian of a molecule.  

(2) Scale the coordinates ri to ri/α (for electrons), and RN to RN/α (for nuclei). Write down the 

expression for the expectation value of energy .  

(3) Set α = 1, we recover the expectation value of energy . Show that at the 

variational extremum with α = 1, we arrived at the virial theorem. 

Ĥ = − 1
2

∂2

∂x1
2 +

∂2

∂x2
2

⎛

⎝⎜
⎞

⎠⎟
− Z δ (x1)+δ (x2 )⎡⎣ ⎤⎦ +δ (x1 − x2 )

φ(x1,x2 ) = λe−λ x1 + x2( ) λ

 d
dx
e−a x  

2

−∞

+∞

∫ dx = a

1sA Ĥ 1sB

ψ = cAsA + cBsB + cCsC

Hij =

α i = j( )
β i, j are neighbours( )
0 i, j are not neighbours( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

α β

2 T + V = 0

E α( )
E = T + V


