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Problem Set 2 
Note: The problems labeled with a star (★) are somewhat lengthy or tricky in the derivations. You are 
encouraged but not obligated to solve them for extra credits.  
 

Lecture 4 

Question 1. Uncertainty principle.  

(1) In the derivation of the uncertainty principle, we have . 

Please prove that the term  is always a real number. (Hint: Show that the commutator 

itself is an anti-Hermitian operator, and its expectation value is purely imaginary.) 

(2) Define  and  (in which Q is any physical observable, and its 

corresponding operator does not explicitly depend on time), please prove the energy-time 

uncertainty principle: .  characterizes the amount of time it takes that expectation 

value of Q to change by one standard deviation. 

Hint: Try to evaluate ∆𝐻#∆𝑄%  first, which requires &𝐻#, 𝑄%(. The Ehrenfest equation of motion links 

&𝐻#, 𝑄%( with 𝑑〈𝑄%〉 𝑑𝑡⁄ . 

(3) Compute  for the wave function  ( ), and validate the 

uncertainty principle in this case. Remember to normalize the wave function first. 

Useful integrals:           

          

 

Question 2. Consider a particle with mass m moving in one-dimensional space, with the 

Hamiltonian: . The associated energy eigenvalues are known to be En. 

(1) If , where C and x0 are two constants, please compute the expectation value 
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of kinetic energy for the stationary states by using the virial theorem. 

(2) Now let us consider another Hamiltonian , which is a modification of :  

(2a) Please use the Ehrenfest equation of motion to prove that for the stationary states 

governed by , the expectation value of the momentum is equal to –λ . 

(2b) Please use the Hellmann-Feynman theorem to solve for the energy eigenvalues for the 

stationary states governed by . 

(3) For the stationary states governed by the general Hamiltonian , let us define 

x0 as the expectation value of the position, and p0 as the expectation value of the momentum. Please 

use the Ehrenfest theorem to prove: 

(3a) If the potential V(x) is quadratic around x0, that is, if we can truncate the Taylor expansion 

of V(x) to the second order at x = x0, then !
!"

, which has exactly the same form as 

in classical mechanics.     

(3b) In general, the potential V(x) is not quadratic. If we are able to partition the potential into 

two parts, i.e., V(x) = VI(x) + VII(x), then we have !
!"

. The physical 

meaning of this result is that, unlike a classical particle, which responds only to the force at x0, the 

quantum particle responds to the force (generating by VII) at neighboring points as well.   

 

Lecture 5 

Question 3. Consider the following operators: 

      

(1) What are the possible values one can obtain if Lz is measured? 

(2) Take the state in which Lz = 1. In this state, what are 〈𝐿#〉, 〈𝐿#$ 〉, and ∆𝐿#? 

(3) Find the normalized eigenstates and the eigenvalues of Lx in Lz basis. (Express each Lx 

eigenstate in terms of the normalized Lz eigenstates.)  
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(4) If the particle is in the state with Lz = –1, and Lx is measured, what are the possible outcomes 

and their probabilities?  

(5) Consider the state |𝑛⟩ = 	4
1/2
1/2
1 √2⁄

9 in the Lz basis. If Lz2 is measured in this state and a result 

+1 is obtained, what is the state after the measurement? How probable was this result? 

 

Question 4. Given the following two-level system: 

 

where  and  are orthonormal basis and  is a number with the dimensions of energy. 

Find the energy levels and eigenstates of this system. 

 

Question 5. Consider a particle (ignore its orbital motion) with the following spin matrices: 

               

where ,  and  are the three unit vectors along the x, y, and z axis. We apply an external 

static magnetic field  on this particle.  

The Hamiltonian for the system is , where μ is a positive physical constant. At 

t = 0, this particle is in the eigenstate of Sz, i.e., . What is the periodicity T for the 

total spin  to flip back to ? 

  

Question 6. 1D Harmonic oscillator: 

(1) Prove that the rising operator  increases the energy of the eigenstate  by . 
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Ĥ = −µ
!
B ⋅
!
S

!
S (t = 0) = "

2
!ez

!
S

!
S (t = T ) = "

2
!ez
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(2) Evaluate , , ,  and . 

 

Lecture 6 

Question 7. Consider a 1D free particle described by the following Gaussian wave packet: 

, in which a > 0 and A is the normalization constant. 

(1) Compute the normalization constant A. 

(2) Compute the expectation value of x and x2 at t = 0. 

(3) Write down the corresponding momentum (k) representation , and compute the 

expectation value  and . Do they change with time? 

(4) What is the value of  at t = 0?  

(5) Compare the form of  and , what is ? 

Useful integral:   

 

Question 8. Let us consider 1D systems. In the momentum representation, we have the following 

rules: (a) , where  is the momentum basis. Note that in terms of p, the 

normalized planewave is ; (b) Orthonormalization: , in 

which  is the Dirac function. 

(1) Write down the expression for the coordinate operator  in the momentum space, based on 

the canonical quantization condition . 

(2) Let us denote the system quantum state as , and the energy eigenequation is . 
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The eigenfunctions in momentum space  are the projection of  in : .      

Write down the energy eigenequation in the momentum representation and the expression for 

the matrix element . 

★(3) A deep attractive potential generated by a point at x = 0 can be modeled by the Dirac delta 

function potential , where V0 is a constant (with the unit of energy).  

Using the energy eigenequation in the momentum representation, solve for the energy 

eigenvalues for the bound states (i.e., E < 0).    Useful integral:    

 
Lecture 7 

Question 9. A particle with mass m in 3D is governed by: , in which the constant 

, p is the total linear momentum, and r is the radial distance from the origin. Please separate 

the variables in the energy eigenequation using the spherical coordinates , i.e., write down 

three eigenequations, each of which only depends on one of the spherical coordinates. 
 
Question 10. Prove that in 1D, if the potential function is an even function, then the wavefunctions 

of the eigenstates must be either odd or even. 
 
Lecture 8 

Question 11. Consider a particle with mass m in a 1D finite well, in which the potential V(x): 

 

where V0 is a positive constant, and L is the length of the box.  

(1) For the bound states (E < 0), show that the energy levels satisfy  (for the 
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 and .   

Hint: Use the statement in Question 10 to construct your wave functions with proper symmetry.  

★(2) Are you guaranteed to have bound states in the well for any positive value of V0 (V0 > 0)? 

(3) For the scattering states (the particle with the energy E > 0 is shooting from the left side of the 

potential), show that in general the transmission probability T ≤ 1.  

T < 1 is called the non-classical reflection. (Imagine that you stand at the cliff and throw a 

ball, the ball will partially be bounced back without hitting anything.) What does the energy E need 

to be (the resonance energy) in order to let the well become perfectly transparent, i.e., T = 1? 

α = −2mE
!
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2m(E +V0 )
!


